Recall the definition of the Fibonacci numbers: <br><pre>f1 := 1 <br>f2 := 2 <br>fn := f<sub>n-1</sub> + f<sub>n-2</sub> (n>=3) </pre> <br>Given two numbers a and b, calculate how many Fibonacc…
Recall the definition of the Fibonacci numbers: <br><pre>f1 := 1 <br>f2 := 2 <br>fn := f<sub>n-1</sub> + f<sub>n-2</sub> (n>=3) </pre> <br>Given two numbers a and b, calculate how many Fibonacc…
The <em>Stern-Brocot tree</em> is a beautiful way for constructing the set of all non-negative fractions <span class="MATH"><img src="/admin/../upload/pimg1532_1.png" alt="$ {m \over n}$" align="MIDDLE" border="0" height="25" width="17">…
<p>This problem seeks the coefficients resulting from the expansion of the polynomial</p> <p align="justify"></p> <div align="CENTER" class="mathdisplay"><i>P</i> = (<i>x</i><sub>1</sub> + <i…
Stan and Ollie play the game of multiplication by multiplying an integer p by one of the numbers 2 to 9. Stan always starts with p = 1, does his multiplication, then Ollie multiplies the number, then Stan, and so on. Before a game starts, they draw an integer …